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LAGRANGIAN FLUID DYNAMICS

USING THE VORONOI-DELAUNAY MESH

John K. Dukowicz
Theoretical Division, Group T-3
Los Alamos National Laboratory

University of California
Los Alamos, NM 87545

ABSTRACT
A Lagrangian technique for numerical fluid dynamics 1s described. This
technique makes use of the Voronoi mesh to efficiently locate new neighbors,
and it uses the dual (Delaunay) triangulation to define computational cells.
This removes all topological restrictions and facilitates the solution of
problems cnntaining interfaces and muoltiple materials. To improve computa-

tional acruracy a mesh smoothing procedure is employed.



I. INTRODUCTION

There are two general classes of methods for the numerical solution of
fluid dynamics problems. This classification is determinad by whether Eulerian
coordinates are used, in which a prescribed, fixed mesh is employed, or whether
Lagrangian coordinates are used, in which the mesh is embedded in the fluid and
is carried along with it. The Eulerian approach is the most common. The
lagrangian method has several distinct advantages, but the difficulties of
implementing such a method, except in the one-dimensional case, have not made
it equally popular.

In the Lagrangian formulation the conservation equations take their
simplest form. In particular, the nonlinear convection terms which often cause
a great deal of inaccuracy assoclated with "~ __.crical sme:ring', are absent.
Since the mesh travels with the flow an initially adequate zoning will gen-
erally remain adequate. Certain features of fluid flows, such as free sur-
faces and interfaces between dissimilar materials, travel with the flow and are
therefore particulariy well resolved by Lagrangian methods.

The two main problems with Lagrangian methods are mesh tangling and
numerical inaccuracy due to highly irregular meshes. The first problem, that
of mesh tangling, has received the most attentiun. The problem arises because
a mesh of fixed topology quickly becomes singular in flows undergoing large
distortions. There are two solutions: rezoning and reconnection. 1In rezoning,
the distorted mesh is mapped onto a more regular mesh., In reconnection, the mesh
topology is changed such that mesh points acquire new neighbors. Methods which
thus circumvent topology restrictions are commonly called free lLagrangian
methods. It should be noted that both of these methods of reconstructing the

mesh involve reapportionment of mass, momentum, and energy among the mesh cells



affected, and this represents a reappearance, to some extent, of the undesired
convective fluxing characteristic of Eulerian methods.

The second issue is less commonly addressed. Even with a satisfactory
mesh topology, containing suitably convex cells, the evolution of the flow may
produce a highly distorted, uneven mesh that is unsuitable for accurate approxi-
mat ion.

One of the most successful Lagrangian techniques is the PIC method(l).
However, this cannot be considered a representative Lagrangian method, in the
sense of this paper, since there is no moving mesh. It is, rather, a prominent
example of the particle methods. In the PIC method, the flow is represented by
large numbers nf particles carrying mass, momentum, and energy. The particles
are accelerated by a pressure gradient determined by counting particles in a
fixed, relatively coarse mesh, Other particle schemes(z-a) are nore closely
related in spirit to molecular dynamics calculations. An interparticle force is

specified, which 1is usually releted to the equation of state. Harlow(s)

(4)

has
shown that the PAF (particle-and-force) method is equivalent to solving the
equations of fluid dynamics in a statistical sense. That this is true for all
such particle methods might be expected from :rtatistical mechanics considera-
tions. However, for the relativcly small number of particles that can be
realistically used, the statictical fluctuations are large and therefore it is
to be ewnpected that solving the mean equations using an equivalent number of
mesh points would be more profitable.

A strictly Lagrangian numcrical method 1is restiicted to those limited
cases in which mesh tangling does not ocrur, as in one-dimensional geometries,
or in situations made effectively one dimensional duc to symmetry, or for
limited evolution times. To overcome mesh tangling problems, the most common

approach is exemplified by the ALE technique(6). In this technique, a mesh of



quadrilateral cells is applied in several phases. In essence, there is first
a Lagrangian phase, followed by a rezone phase in which mesh points are moved to
-vescribed positions. The rezone may occur at every time step, in which case it
is termed a continuous rezone, or it may occur after many time steps but before
the mesh 1s in danger of tangling, in which case some form of interpolation is
employed to transfer variables from one mesh to the other. The rezoned mesh most
frequently preserves the topology of the original mesh, and in fact it is often
just the regular mesh formed by the intersection of perpendicular straight lines.
An alternative to this type of rezoning is provided by the free Lagrangian
methods(7’8). In these methods, the topology is changed by choosing new neigh-
bors based on some suitable criterion. 1In order to he free of topological con-
straints, the resulting meshes are triangulations in twc dimensions. The
criterion for locating neighbors may be based on the distance between points
(nearest neighbors), or on some measure of the vertex angles of the triangula-

(7,8)

tion. The resulting mesh is usually found by iteration , or else it might

be obtained by some variation of the bin sorting algorithm for finding nearest
neighbors(b‘g). Other approaches, not described in the literature, are possible
and are being pursued., It may be said, however, that while these techniques
overcome the problems of mesh tangling they do not solve the problem of mesh
irregularity,

In the present paper we will describe a technique which addresses both of
these issues. This technique combines the advantages cof the frec Lagrangian
methods with their unrestricted topology, with the improved numerical accuracy
made possible by selective continuous rezoning. A pavrticularly efficient method

for changing mesh topolopy is used whicl. i8 based on the construction of the

Voronoi mesh, which will be defined and fully described later. The problem of



mesh irregularity is overcome by allowing the mesh to slip with respect to the
flow in order to set up an essentially regular local mesh. The mesh is maintained
strictly Lagrangian in those parts of the flow where this is required, such as
at interfaces. This slippage introduces convective fluxing, but on the other
hand the mesh regularization greatly reduces mesh reconnection and its associated
fluxing. It should be stressed that this fluxing is not nearly as severe
as that in Eulerian calculations since the mesh still moves with approximately
the local flow velocity.

This method will be described in one of its simplest possible implementa-
tions. That is, 1t will be limited to two-dimensional Cartesian coordinates
and inviscid, compressible flow with an a2quation of state in which the pressure
is a function of the density only. Simple examples are the isentropic and the
Chaplygin equations of state. Such an implementation will illustrate all the
main features of the method in a realisti~ context, without unnecessary compli-
cations. It is anticipated that there is nothing that would prevent the exten-
sion of the techniques described to more generally interesting situations

involving an energy equation, viscosity, multiple materials, cylindrical coordi-

rnate systems, or three dimension-c,



I1. THE VORONOI MESH

Free Lagrangian tecnniques are characterized by mesh points changing their

neighbors during a calculation. There is a variety of techniques for locating

new neighbors(7—9). The Voronoi wesh is a geometrical construction associated

(10,11)

with a random distribution of points in space that appears to be uniquely

well suited to this application.

The Voronoi mesh may be defined as the subdivision of space, associated
with a random set of points, into a set of convex polygons (polyhedra in 3-D)
such that all space inside a polygon is closer to the enclused point than to any
other point. The faces of the polygons are segments of the perpendicular bi-
sectors »f the lines joining neighboring points. A small fragment of a Voronoi
mesh is illustrated in Fig. 1. (We iimit the discussion here to two dimensions

but the Voronoi mesh is defined in a space of arbitrary dimensionality(lo’ll)).

The Voronoi construction is not widely known but it has fuund epplications in

(12) (13) (14) (15)

solid state and liquid state

(16)

theorv, astroph:sics , microemulsions

rock structure . and theories of computational complexity(ll).

The Voronoi mesh possesses a number of properties, some of which are
especially importanc in our application. Associated with the Voronoi mesh is
a dual mesh, formed by joining the neighboring points, which is called the

Delaunay triangulation(lo'ls).

This dual mesh is iIndicated by dashed lines in
Fig. 1. The vertices »f the Voronoi polygons are called the Voronoi points. The
Voronol points are the circumcenters of the Delaunay triangles (centers of the
circles circumscribing the triangles). Each line joining neighbors is the
diagonal of a quadrilateral formed by two adjoining triangles. This diagonal
divides that pair of opposite angles of the quadrilateral that sum to more than

(17)

o]
180, Contrary to the assertion of Shamos and Hoey , the Delaunay triangu-

lation does not have the minimum total side length.



The most important property of the Voronoi mesh is that it is unique and
continuous. That is, a continuous translation of the points (centers) defining
the Voronoi mesh produces a continuous change in the Voronoi mesh. This process
is illustrated in Fig. 2. As neighbors change, the associated polygon side
length decreases to zero and then a new side begins to form associated with the
new neighbors. When the side length goes to zero, twc Voronoi points merge and
all four associated centers are located on the circumference of a single circle.
This shows us that a known pair of neighbors is always formed whenever another
pair of points is separatel, and vice-versa. This, therefore, obviates the need
to search for nearest neighbors.

The property of continuity assurec us that we can follow the evolution of
the Voronoi mesh in this simple manner provided the time step is sufficiently
short. A sufficient condition for this is that a point stay within its already
defined Voronoi polygon during a time step. This implies that we must start
from an existing Voronoi mesh at the initial time. We are thus faced wizl the
task of constructing an initial Voronoi mesh.

There exist published algorithms for constructing arbit.ary Voronol meshes

in three dimensions(lg’zo). Shamos and Hoey(l7)

suggest an ingenious algorithm
for two dimensions. For our purposes it is sufficient to start from a regular
rectangular or hexagonal arrangement of points for which the Voronoi mesh is
obvious.

The actual algorithm for finding new neighbors consists of a single pass
through the mesh "disconnecting' the appropriate diagonal, and at the same time

"connecting'"

the corresponding diagonal according to which pair of opposite
angles of a quadrilateral sums to more than 180°. The continuity property
ensures that all such connections will be properly considered in a single pass,

and it is easy to ensure that redundant checking does not take place. It is of



interest to note that the average number neighbors in the Delaunay triangulation,
as in any planar triangulation. is six, whenever the number of boundary points

is small compared to the total number of points.



IIT. EQUATIONS AND DIFFERENCING

The prototypic equations which we will consider are the equations of

inviscid, compressible gas dynamics given by

—g—to + Vepu = 0, (1
3
FtPu + Vepuu = - Vop, (2)

together with the special equation of state

p=p(p) . (3)
This equation of state wncouples and eliminates the energy equation, and thus sim-
plifies the system. Examples are the isentropic equation of state (p = pm(p/p“)n,

and the Chaplygin equation of state (p = kz(l/ou—l/o) .

It is frequently desirable, especially for compressible flow, to formulate
difference equations which preserve the conservation property of the differen-
tial equations. This is most easily done by writing the equations in the

control volume form(zl)

d_ fpdv + fp(g—_‘g) .ndS = 0 , (4)
de Jy s

and

4 fOEdV + fo_u_(g—g) .nds = - fpp_ds, (5)
it J,, s o

where V(t), S(t) are the time varying volume and surface of tie control volunme,
n is the unit vector, normal to the surface, pointing outwards, and b is the sur-
face velocity. The surface integrals involving the surface velocity b are the

convective fluxing terms. We can define

m - fDdV (6)

v

to be the control volume mass dnd



a_1 f'pgdv (7)
nJy

to be the mean control volume velocity. This defines the control volume position
through

4
d«

(8)

ESS
>

In the special case of b = u there is no fluxing across the control surface and

the control volumes are Lagrangian, i.e.

Sm _ (9)
dt 0,
and
n d . g _-/'p_r_l_ds. (10)
dt= g

(11)

<
<|8

where V’=./;dv is the cell volume, and this gives the pressure from the equation
of state p = p(p).
The choice of control volume is somewhat arbitrary. At first sight the use

of the Voronoi polygon as the control volume appears natural(zz).

However, there
are several rzasons why this is not attractive. The straightforward evaluation
of the term involving the integral of surface pressure, using the average of
neighbor cell pressures, is not consistent with the differential equations since
this pressure is not centered along the cell face. To overcome this, it is
necessary to evaluate the Voronoi point coordinates, and to laterpolate among
local pres:ures to find the pressure at the cell vertices. This adds a con-

siderable amount f computation. Further, the ccll vertices are determined

strictly from geometrical considerations and therefore do not travel with the

10



local flow velocity. This means that the cells are not Lagraagian (the cell
points are),and fluxing across cell faces is necessary. In addition, the c:11
points are not centered within their cells and as we shall see later, this leads
to numerical inaccuracy.

An alternative choice is the control volume formed by all the triangies of
the Delaunay mesh surrounding a cell point, as illustrated in Fig. 3a. There
is triple overlap of these cells, so that the actual volume of a cell is equal to
a third of the total volume of its triangles. This control volume appears to be
most applicable to those variables that are defined at the cell points (or triangle
vertices). Another choice is the cell formed by joining triangle centroids and

the mid-points of triangle sides(23)

, as 1llustrated in Fig. 3b. This cell
appears to be appropriate to those variables which are defined on the triangles.
The volumes of these two types of cells are equal.

Both of these cells are Lagrangian in the sense that all vertices of the
cell move with local flow velocity (b = u), so that no fluxing is required. The
volume (area) of the cells is

vy = %g- 3 (x; 4 x1.), (12)
i

where I; is the radius vector to vertex i, ordered in counterclockwise order

around cell point j (Fig. 3a), and Z is the unit vector perpendicular to the

two dimensional plane. We note that this is equal to 1/3 X ka where v, are
the triangle volumes. The pressure force term may be expressed as
> e - )
Vy<ry 2Ex 1Py (ry 1 r449) (13)

i
for the case where the pressures are defined at cell points. We note that this
is equivalent to a volume weighted average of tiiangle pressure gradients, and
therefore this term is consistent with thz differential formulation. If tne

pressure is defined on the triangles, then using the cell of Fig. 3b

11



ngy pj> . %_g N i Pk(zi_lei). (14)

If the triangle pressure is obtained at the centroid bv linear interpolation of

the vertex pressures:
pk .;_1_ + ) 115
3Py *+ Pyt Py, (15)

then Eqs. (12 and (l4) give precisely the same result.

As 1s appareunt from the above, there is a certain ireedom in the choice of
pressures &t cell points, as suggested following Eq. (11). Another c:.ice is to
define the pressure on the triangles, associated with assigning mass to “he
triangles. Such a choice is natural if multimaterial problems are considered,
in which case the triangle sides forwm interfaces. In this case Py = p(pk).

There are distinct differences in the numerical methods that emerge based
on these choices. In the case of vertex pressures, 1t is seen that the cel.
volume, Eq. (12), and hence the cell pressure is independent of the position of
the cell point. This implies that certain modes of motion become possible,
typically with a high spatial wavenumber, which are not '"seen'" by the difference
equations, and which can arise as a result of boundary conditions, for example.
The growth of such a8 mode can destroy the numerical solution. This behavior
typically arises when velocity and pressure are located at the same point(za’zs)
and the problem is frequently '"solved' by filtering, or by the use of viscous
"node couplers". The use of triangle pressures eliminates these coupling prob-
lems, but it is not without its own difficulties. In the limit of incompressible
flow, the use of trianglc pressures implies the constancy of triangle voiumes.

As Fritts and Boris(s)

point out, it is not possible to achieve this for most
boundary conditions, in a confined volume. While in compressible flow this geo-

metrical restriction is less cevere, 1t can produce strong velocity fluctuat ions

of strictly numerical origin. We have used a linear combination of these two

12



metheds and this frequently works well. There are many other possibilities for
getting around these problems and they must be investigated in the future.

The cells we have described are Lagrangian only while neighbors do not
change. When neighbors do change, cell volumes change, and therefore cell masses,
momenta and energy must change. This requires a local reapportioning of mass,
momentum, and energy in a conservative fashion. This 1s particularly straight-
forward using the cell of Fig. 3a, since a quadrilateral whose diagonal changes
as a result of a neighbor change is shared by all the affected cells. An im-
portant point is that following the reapportionment, the mass, momentum, and
energy changes are added to the respective cell values, and at present it {is
not known how to do this reversibly. Thus the process of reapportionment is
inherently diffusive and correcponds to a loss of information. Reapportion-
ment mav be considered as a form of fluxing that takes place instantaneously,

rather than as a continuous process.

Temporal differencing is explicit and follows the practice of PAF(A):
n+l n n n
- « - ALV, <V >
my (g - uy) byl
n+l n n+l
X, - x, = At . 16
2y mxypthuy (16

This form of differencing has stability advuntages(a) and is time centered for
position x for constaut time steps. The completely time centered scheme is
implicit, and although time-reversible and therefore nondiffusive, it does not

appea: to be worthwhile in view of the nonreversibility of the rea,portionment

discussed above.

13



1V, MESH SMOOTHING

We note that in applying Eqs. (4-8) one makes the approximation

¢, .1 ¢dav , an»
Iy fv
3 b
where ¢ 1s typically p or pu. Expanding ¢ in a Taylor series, we see that
- L - . ™ - - l H —:__— 2 -
¢J vj.l;J ¢dv V¢J (LJ ;j) 2 v E¢J.(r rj)J +
where z - Vl-/;l xdv ’
R T A
(r -r )2 -l (r - r )2 dv . (18)
S 1 T

Theretore, our approximation is first order accurate if the cell point is lo-
cated within the cell, sccond order accurate if the cell point is at the cell
centroid, and tihe approximation ls further improved if the cell is symmetric, so
that the product of inertia of the cell areca is zerc. The construction of the
Delauna'’ mesh ensures that our method is at worst rirst order. MHowever, In priac-
tice the mesh can become very irregular (sec cxamples in Ref. (7)), with cell
points far from the cell centroids.

Therefore, to improve accuracy, we introduce a mesh smoothing procedure at
each time step following the Lagrangian part of the calculation. The cell con-
troids arc computed at the end of the Lagrangian phase and the cell points are
moved some frac*ion of the distance (typically 0.5) towards them. This defines
the mesh velccity b in the fluxing terms. Of course, this will neot result in the
cell point being exactly at the centruid but because of the small time steps
required for both accuracy and stability, the cell point will at ull times be
in the near vicinity of the centroid. The fluxing terms in F n. (4,5) are

evaluated assuming a linear variation of p, u, and b along the cell faces.

14



It is straightforward to retain a Lagrangian mesh wherever it is nexessary,
such as at interfaces or at free surfaces. Frequently, there are large parts
of the flow where the mesh does not get distorted in the Lagrangian calculation
and it is possible, as well as desirable, to avoid mesh smoothing in these
reglons. As one result of the mesh smoothing, there is far less neighbor
switching since the mesh tends to approach a hexagonal configuration, so that
there is, in effe~t, a trade off between the fluxing due to reapportionment
and the fluxing due to smoothing. At no time is the fluxing as severe as 1in
Eulerian calculacions since, on the average, the mesh still travels with the

flow.,

15



V. COMPUTATIONAL EXAMPLE

As an 1llustration of the technique described, at its current state of
development, a computation of the symmetric, normal impact of two Chaplygin
jets was carried out. This 1is an attractive test problem because it in-
volves a free surface, and because certain analytical results are avallable
[26] for comparison with the calculation.

Two 2-dimensional jets of uniform width (h = 0.0l m), uniform density
(pn = 8.9 x 103 kg/m’). are assumed to undergo normal inpact. The jets are
composed of a single material satisfving the Chaplygin equation of state
(cee definition following Fq. 3. k2 = 1,218 « 106 GPa kg/mj). The jets
travel at 1.96 x 10 m/s, which coricsponda to a Mach number M_ = 0.5 at the
unperturhed conditions.

The computation was performed using triangle pressures only, mesh
smoothing was performed In the region where 'Ap'/p' > 0.0, and the time
step wias controlled {n the Lagranpian phase by limiting the rate of change
of the perimeter of triangles.

Flgures 4 and 5 {llustrate the early development of the free surface.

A high deneity zone {s formed above the plane of contact, and it dissipates
ar it propagates away from this plane as the steadv atate {8 approached.
Figure 6 shows the mesh, and Figure 7 shows the densitv contours and veloci-
ty voctore at 25 s following impact, the termination of the calceulation.
Figure 6 ghows a number of points plotted along the exact free surface at
ateady state, for comparison. The agreement {4 reasonable and might be Im-
proved by continuing the computation further. The steady state froe surface

shape {8 given by the equation

16



Y= ln[(ex + l]/(ex - l)] . (19)

where
Xe—32 ___(2x - h)
2hf1 - M2
and
Yw— T ____(2y-h) .
2haf1 - M2
oD

Figures B and 9 show the comparison of the calculation with the exact
distributions of deas{ity and velocity along the x-axis, the plane of con-
tact. The density and velocity distribut’'on along this axis are given by

the transcendental equation

1l - M2
2 -1 o
hil = = tan ~ Q + ~— in [(QF1)/(Q=1)]

»
[}

u ek wp? o (20)

p/af1 =M, M,

©

B
N
N

where

M2t =M qes(e¥c? - 1)

and

(1 +\/TT:_EE)/M_ .

G
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The agreement with the exact distributions is reasonable, except for
the density at the stagnation point. This discrepancy may be due to the
calculation not having reached the steady state.

In conclusion, this paper describes a new and promising technique for
Lagrangian numerical fluid dynamics. However, much more research remains to
be done to investigate variations in the scheme and their effect on the ac-

curacy and performance of the technique.
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FIGURE CAPTIONS

A fragment of a Voronoi mesh and the assoclated Delaunay triangula-
tion.

The covtinuous transition of the Voronol mesh as points 1 and 3
move closer tcgether and are connected as neighbors, while points 2
and 4 are disconnected.

Two alternative definitions of computational celis associated with
the cell poirt jJ.

The mesh and the density contours, illustrating the early develop-
ment of the free surface, at t = 2.65 ys.

The mesh and the density contours at t = 6.77 ps.

The mesh at t = 25 uys, and the shape of the free surface from the
exact solution at steady state.

The density contours and velocity vectors at t = 25 ps.

The exact steady state and the computed (t = 25 ys) density profile
along the plane of impact.

The exact steady state and the computed (t = 25 us) velocity pro-
file along the plane of impact.
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VORONOI DELAUNAY
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